
Arkusz I 2022 - Klucz rozwiązań

Zadanie 1.1 (0-1) Test
Poprawna odpowiedź: F,F,P,F

Zadanie 1.2 (0-1)
Poprawna odpowiedź: P, F, F, P

Zadanie 1.3. (0–1)
Poprawna odpowiedź: F, P, F, F

Zadanie 1.4. (0–1)
Poprawna odpowiedź: F, F, F, P

Zadanie 1.5. (0–1)
Poprawna odpowiedź: P, P, P, P.
 	
Zadanie 2. (0-5) Liczby dwupierwsze

Zadanie 2.1. (0–1)

	𝑝
	
	𝑞
	
	̅𝑝𝑞̅̅

	61
	67
	
	6671
	

	83
	19
	
	8139
	

	7
	71
	
	771
	

Zadanie 2.2. (0–2)
C++:
#include <iostream>

using namespace std;
 int main() {
 int jednocyfrowe[4] = {2, 3, 5, 7};
 int dwucyfrowe[21] = {11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}; int n; for(int i = 0; i < 4; i++)
 {
 for(int j = 0; j < 21; j++)
 {
 n = 100*(dwucyfrowe[j]/10) + 10*jednocyfrowe[i] +
(dwucyfrowe[j]%10);
 cout << n << endl;
 }
 }
 return 0; }

Python:
jednocyfrowe = [2, 3, 5, 7]
dwucyfrowe = [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97]
 for p in jednocyfrowe: for q in dwucyfrowe:
 n = 100*(q//10) + 10*p + (q%10) print(n)

Lista kroków:
Krok 1. jednocyfrowe := [2, 3, 5, 7]
Krok 2. dwucyfrowe := [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
Krok 3. Dla wszystkich liczb p w tablicy jednocyfrowe wykonuj Kroki 4-6
 	Krok 4. Dla wszystkich liczb q w tablicy dwucyfrowe wykonuj Kroki 5-6
 	 	Krok 5. n := n = 100*(q div 10) + 10*p + (q mod 10) 	 	Krok 6. Wypisz n
Uwaga. Uczeń zamiast wypisywać liczby pierwsze może je wygenerować algorytmem, np. sitem Eratostenesa, lub przebiec pętlami po wszystkich liczbach jednocyfrowych i dwucyfrowych, sprawdzać, czy liczby są pierwsze i dopiero wtedy generować liczbę dwupierwszą.
Punktacja:
2 pkt – rozwiązanie w pełni poprawne
1 pkt – za propozycję algorytmu wypisującego wszystkie takie liczby, lecz z powtórzeniami; lub za poprawny algorytm, lecz z usterką w tablicach z liczbami pierwszymi; lub za poprawny algorytm, lecz z usterką w algorytmie wyznaczającym kolejne liczby pierwsze 0 pkt – w pozostałych przypadkach

Zadanie 2.3. (0–2)
C++:
#include <iostream>
 using namespace std;

void Rozloz(unsigned int n, unsigned int& p, unsigned int& q)
{
 int k = 1, r;
 p = 0; q = 0; while(n > 0) { r = n%10; p += r*k; n = n/10; r = n%10; q += r*k; n = n/10; k *= 10;
 }
}
bool CzyPierwsza(unsigned int n)
{ int d = 2; if(n == 1) return false;
 if(n == 2 || n == 3) return true;

 while(d*d <= n) { if(n % d == 0) return false; else d++;
 } return true;
} int main() {
 unsigned int n, p, q; cin >> n;

 Rozloz(n, p, q);

 if(CzyPierwsza(p) && CzyPierwsza(q)) cout << "TAK" << endl; else
 cout << "NIE" << endl;
 return 0;
}

Python:
def Rozloz(n): k = 1
 p = q = 0 while n > 0: r = n%10 p += r*k n = n//10 r = n%10 q += r*k n = n//10 k *= 10 return p, q def CzyPierwsza(n):
 d = 2 if n==1:
 return False
 if n==2 or n==3: return True
 while d*d<=n: if n%d == 0: return False else: d += 1
 return True n = int(input("Podaj n: ")) p, q = Rozloz(n) if CzyPierwsza(p) and CzyPierwsza(q):
 print("TAK") else: print("NIE")

Lista kroków:
Krok 1. k := 0, p := 0, q := 0
Krok 2. Dopóki n > 0 wykonuj Kroki 3-9:
 	Krok 3. r := n mod 10
 	Krok 4. p := p + r*k
 	Krok 5. n := n div 10
 	Krok 6. r := n mod 10
 	Krok 7. q := q + r*k
 	Krok 8. n := n div 10
 	Krok 9. k := k*10
Krok 10. d := 2
Krok 11. Jeżeli p = 1 lub q = 1, to wypisz NIE i zakończ algorytm
Krok 12. Jeżeli p = 2 lub p = 3 to idź do Kroku 17
Krok 13. Dopóki d*d <= p wykonuj Kroki 14-15
 	Krok 14. Jeżeli p mod d = 0, to wypisz NIE i zakończ algorytm
 	Krok 15. d := d + 1
Krok 16. d := 2
Krok 17. Jeżeli q = 2 lub q = 3 to wypisz TAK i zakończ algorytm
Krok 18. Dopóki d*d <= q wykonuj Kroki 19-20
 	Krok 19. Jeżeli q mod d = 0, to wypisz NIE i zakończ algorytm
 	Krok 20. d := d + 1
Krok 21. Wypisz TAK i zakończ algorytm

 	

Zadanie 3. (0-5) FlipSort

	Nr pytania
	Oczekiwana odpowiedź

	3.1
	
	tab
	flip(a,b)
	Tablica po wykonaniu operacji flip

	[1,4,8,3,8,2,9]
	flip(2,6)
	[1,2,8,3,8,4,9]

	[1,2,7,6,3,9,0]
	flip(3,5)
	[1,2,3,6,7,9,0]

	[1,2,3,7,9,4,5]
	flip(4,6)
	[1,2,3,4,9,7,5]

	3.2
	
	Tablica tab
	Sekwencja operacji flip

	[2, 3, 1, 7, 5]
	flip(1,3), flip(2,3), flip(4,5)

	[4, 7, 1, 2, 3]
	flip(1,3), 	flip(2,4), 	flip(3,5), flip(4,5)

	3.3
	Odpowiedź: n-1

	3.4
	[bookmark: _GoBack]Przykładowe rozwiązanie:

funkcja szukajMin(n, tab, ind):
 min := tab[ind] minInd := ind od i := ind do n, wykonuj:

	
	 jeżeli tab[i] < min, to:
 min := tab[i] minInd := i zwróć minInd
 funkcja flipSort(n, tab): Od i := 1 do n – 1, wykonuj:
 minInd = szukajMin(n, tab, i) jeżeli minInd != i, to:
 flip(i, minInd)
 wypisz „flip(„ + i + „,” + minInd
+ „)”
flipSort(n, tab)

Strona 0 z 8

Strona 0 z 8

Strona 1 z 8

