1. Tworzenie tabeli

CREATE TABLE `nazwatabeli`(

`nazwakoumny1` typdanych,

`nazwakolumny2` typdanych);

typy danych:

INT – liczby całkowite

FLOAT – liczby rzeczywiste

DATE – data

TIME-godzina

TEXT – odchodzi się od jej używania

CHAR(20)

VARCHAR(20)

kotek – ma 5 znaków , jeżeli damy typ char to pozostałe miejsce zostanie wypełnione spacjami, aż do 20

jeżeli damy varchar to zajmie tylko tyle miejsca ile znaków ma tekst plus 1 znak , który przechowuje długość pola (w przypadku kotka 5+1)

char – używamy gdy w kolumnie teksty zawsze będą miały taką samą wartość np. Nr telefonu, kod pocztowy

varchar -gdy nie wiemy jak długi będzie tekst – np. Imię, nazwisko itp.

Char

zaleta: operacje na tej kolumnie zachodzą szybciej, ponieważ długość każdego rekordu jest taka sama

wada – zajmuje więcej miejsca na dysku

varchar

zaleta – zajmuje mniej miejsca na dysku

wada – wolniej przetwarzany

CREATE TABLE `nazwatabeli`(

`nazwakoumny1` INT auto_increment primary key not null,
`nazwakolumny2` typdanych);

Uczniowie

idu – klucz podstawowy (INT)

imie

nazwisko

klasa

Oceny

id0 – kluczpodstawowy

uczen_id - klucz obcy

ocena

CREATE TABLE `Oceny`(

`id0` INT auto_increment primary key not null,

`uczen_id` INT,
`ocena` INT,

FOREIGN KEY (`uczen_id`) REFERENCES `Uczniowie`(`idu`));

);

2. Modyfikacja struktury tabeli

a) dodawanie nowej kolumny

dodaje kolumnę na samym końcu

ALTER TABLE `nazwatabel` ADD COLUMN `nazwakolumny` typdanych;

dodawanie koluny jako pierwszej

ALTER TABLE `nazwatabel` ADD COLUMN `nazwakolumny` typdanych FIRST;

dodawanie kolumny po jakiejś konretnej kolumnie

ALTER TABLE `nazwatabel` ADD COLUMN `nazwakolumny` typdanych AFTER `nazwakolumny po której chcesz dodać nową`;

b. usuwanie kolumny

ALTER TABLE `nazwatabel` DROP COLUMN `nazwakolumny`;

c. można jednocześnie dodawać i usuwać

ALTER TABLE `rzeczy` DROP COLUMN `cena`, ADD `cenabrutto` FLOAT;

d. można zmienić typ danych

ALTER TABLE `rzeczy` DROP PRIMARY KEY, MODIFY `id` INT;

usuwa klucz podstawowy i zmienia typ danych na int

e. zmiana nazwy kolumny

ALTER TABLE `rzeczy` CHANGE `cena` `cenabrutto` FLOAT;

f. zmiana nazwy tabeli

ALTER TABLE `staranazwatabeli` RENAME `nowanazwa`;

3. Usuwanie tabeli

DROP TABLE `nazwatabeli`;

4. Usuwanie bazy danych

DROP DATABASE `nazwabazy`;

5. Usuwanie wszystkich rekordów z tabeli

TRUNCATE TABLE `nazwatabeli`; - szybciej działa

DELETE FROM `nazwatabeli`;

6. Usuwanie konkretnych rekordów z tabeli

DELETE FROM `nazwatabeli` WHERE warunek;

7. Modyfikacja rekordów w tabeli

UPDATE `nazwatabeli` SET `pole1`=’wartosc1’, `pole2`=’wartosc2’ WHERE warunek;

WHERE `nazwisko`=’Kowalski’;

WHERE `nazwisko`=’Kowalski’ or `nazwisko`=’Nowak’;

WHERE `nazwisko` IN (‘Kowalski’,’Nowak’);

WHERE (`nazwisko`=’Kowalski’ or `nazwisko`=’Nowak’) and `imie`=’Jan’;

WHERE `wiek`>=15 and wiek <=20;

WHERE `wiek` >14 and wiek<21;

WHERE `wiek` IN (‘15’,’16’,’17’,’18’,’19’,’20’);

WHERE `nazwisko` LIKE ‘%ski’;

WHERE `nazwisko` LIKE ‘A%o_’; - nazwiska zaczynające się na A przedostatnia litera o

8. Dodawanie rekordów

jednego

INSERT INTO `nazwatabeli` (`pole1`,`pole2`,`pole3`) VALUES(‘wartosc1’,’wartosc2’,’wartosc3’);

INSERT INTO `nazwatabeli` VALUES(‘wartosc1’,’wartosc2’,’wartosc3’);

gdy np. pole1 jest autonumerowane

INSERT INTO `nazwatabeli` (`pole1`,`pole2`,`pole3`) VALUES(‘’,’wartosc2’,’wartosc3’);

lub

INSERT INTO `nazwatabeli` (`pole2`,`pole3`) VALUES(’wartosc2’,’wartosc3’);

wielu naraz

INSERT INTO `nazwatabeli` (`pole2`,`pole3`) VALUES(’wartosc2’,’wartosc3’),(’wartosc4’,’wartosc5’),(’wartosc6’,’wartosc7’);
9. Wyświetlanie danych z jednej tabeli
SELECT * FROM `nazwatabeli`;
* - oznacza, że będą wyświetlane wszystkie kolumny
SELECT `kolumna1`,`kolumna3` FROM `nazwatabeli`;
SELECT * FROM `nazwatabeli`
WHERE warunek;
sortowanie rosnąco
SELECT * FROM `nazwatabeli`
ORDER BY kolumna ASC;
sortowanie malejąco
SELECT * FROM `nazwatabeli`
ORDER BY kolumna DESC;
wyświetlanie określonej liczby rekordów
SELECT * FROM `nazwatabeli` LIMIT x,y;
x- nr rekordu poprzedzający ten od którego chcemy wyświetlić
y – liczba rekordów do wyświetlenia
SELECT * FROM `nazwatabeli` LIMIT 9,15;
wyświetli rekordy od 10 do 24
gdybyśmy chcieli zacząć od 1 rekordu
SELECT * FROM `nazwatabeli` LIMIT y;
SELECT `cena` FROM `nazwatabeli`
ORDER BY `cena` DESC
LIMIT 1;
funkcje
SUM – dodaje wartości w rekordach
COUNT – liczy rekordy
AVG – oblicza średnią
MIN – wyznacza wartość minimalną
MAX – wyznacza wartość maksymalną
	ocena

	3

	4

	5

	1

	3

SELECT SUM(`ocena`) FROM `nazwatabeli`; -----→ 16
SELECT COUNT(`ocena`) FROM `nazwatabeli`; -----→ 5
SELECT AVG(`ocena`) FROM `nazwatabeli`; -----→ 3,2
SELECT MIN(`ocena`) FROM `nazwatabeli`; -----→1
SELECT MAX(`ocena`) FROM `nazwatabeli`; -----→ 5
nowa nazwa pola

SELECT SUM(`ocena`) AS `nowanazwa` FROM `nazwatabeli`;
SELECT `imie`, `nazwisko`,AVG(`ocena`) AS `srednia_ocen`
FROM `nazwatabeli`
GROUP BY `nazwisko`,`imie`;
wyświetlanie bez powtarzania wartości w rekordach
SELECT DISTINCT `miasto`
FROM `nazwatabeli`;
SELECT `miasto`
FROM `nazwatabeli`
GROUP BY `miasto`;
10. Losowanie
rand() - losuje liczbę od 0 do 1
SELECT rand();
losowanie liczby całkowitej z wybranego zakresu
floor(rand()*(maxvalue-minvalue+1)*minvalue)
1-10
SELECT floor(rand()*10*1);
11. data/czas
now() - aktualny czas i data;
current_date() - aktualą datę
current_time() - aktualny czas
month(data) – miesiąc w postaci teksu
np.
month(‘2025-02-23’);
month(current_date());
month(dataur); dataur-nazwa kolumny
day(data) – dzień
year(data) – rok
monthname(data) – miesiąc w postaci tekstu
dayname(data) – dzień tygodnia w postaci tekstu
hour(czas) – godzina
minute(czasu) – minuty
second(czas) – sekundy
weekday(data) – dzień tygodnia w postaci cyfry 0- poniedziałek
last_day(data) – ostani dzień dla danego miesiąca
last_day(‘2025-01-06’) zwróci 2025-01-31
datediff(jednadata,drugadata) – oblicza różnicę dni pomiędzy dwiema datami
extract(year from data) - wyciaga rok
extract(month from data) – wyciaga miesiac
extract(day from data) – wyciaga dzień
Łączenie tabel za pomocą JOIN
INNER JOIN - wyświetli to co jest wspólne dla obu tabel
LEFT JOIN – wyświetli wszystko z tabeli, która jest po lewej stronie
RIGHT JOIN - wyświetli wszystko z tabeli, która jest po prawej stronie

SELECT *
FROM tabela1 INNER JOIN tabela2 ON tabela1.kp=tabela2.ko;
SELECT *
FROM (tabela1 INNER JOIN tabela2 ON tabela1.kp=tabela2.ko) INNER JOIN tabela3 ON tabela3.kp=tabela1.ko;
SELECT *
FROM ((tabela1 INNER JOIN tabela2 ON tabela1.kp=tabela2.ko) INNER JOIN tabela3 ON tabela3.kp=tabela1.ko) INNER JOIN tabela4 ON tabela4.kp=tabela3.ko;
SELECT *
FROM tabela1 LEFT JOIN tabela2 ON tabela1.kp=tabela2.ko;
SELECT *
FROM tabela2 RIGHT JOIN tabela1 ON tabela1.kp=tabela2.ko;
