GIT - system kontroli wersji

GITHub – to serwis, w którym możemy umieścić repozytoria GIT-a

1. Instalkę git-a pobieramy z internetu , instalujemy wszystko domyślnie.

2. Tworzenie repozytorium – klikamy prawym przyciskiem myszy i wybieramy Git Bash here (wtedy mamy obsługę Git-a z konsoli)

3. Otworzy nam się konsola systemowa git-a, w której możemy pisać polecenia

git init – tworzenie repozytorium

git config user.name „podajemy nazwę użytkownika”
git config user.email „podajemy prawdziwy email”
ls – wyświetla pliki

git status – pokazuje status repozytorium

touch nazwa.txt – tworzy pusty plik nazwa.txt

touch code. - otworzy vs

git add nazwa.txt - dodaje plik do git-a

git commit -m”jakiś komentarz do czego jest commit” – tworzymy commit (commity to zmiany w repozytorium w danym branchu czyli gałęzi)

git log – historia commitów

git add -A – dodaje wszystkie pliki naraz

git branch – pokazuje na jakiej aktualnie jesteśmy gałęzi i jakie ewentualnie mamy jeszcze inne gałęzie

git checkout -b „nazwa gałezi” – tworzy nowego brancha i od razu nas do niego przenosi

git checkout master – przeniesie nas na główną gałąź, która nazywa się master

git merge nazwabrancha – integruje zmiany z jednego brancha na drugi

Przesyłanie zmian do zewnętrznego repozytorium
1. Tworzymy konto na GitHub

2. Po zalogowaniu tworzymy nowe repozytorium, wybieramy czy ma być publiczne czy prywatne

3. Potem kopiujemy pierwsze i ostatnie polecenie, które się pojawi na dole i wklejamy je w konsolę. Dodatkowo w ostatnim zmieniamy z main na master

4. Po wykonaniu tych poleceń w GitHub powinniśmy mieć to co w Git-cie

git push – wysyła repozytorium do GitHuba
git pull – pobiera z GitHuba do Git-a

git clone x – tworzy kopię istniejącego repozytorium git-a

x- klikamy w GitHub , wybieramy repozytorium , klikamy code kopiujemy to co jest w https

gdy są konflikty

git pull –rebase
otwieramy plik zatwierdzamy zmiany

git add

git rebase –continue
[image: image1.jpg]

[image: image2.png]rebase -i --autosquash origin/main
merge --no-ff feature-branch
cherry-pick --strategy=recursive -
commit —-amend --no-edit

reset --hard origin/main

reflog expire —-expire=now --all
gc --prune=now --aggressive
submodule update --init --recursiv
worktree add ../new-feature featur
replace bad-commit good-commit
update-index --assume-unchanged

J
git add . ‘git add .
git commit -m git commit -m
it push i
gp—

Kascote 55 70 85 100 115 130 145

