HOOKIE

Hookie sg dodatkiem, ktére pozwalajg uzywanie i funkcjonalno$ci bez uzycia klas.
Uproszczaja kod, zwigkszaja jego czytelnos$¢, pozwalaja na pobieranie danych w prosty i
intuicyjny sposéb

Przykladowe hookie

1. useState
uzywamy go, jezeli bedziemy chcieli warto$¢ stanu wys$wietli¢ na stronie
deklarujemy go w funkcji App, przed return
const [nazwa,nazwaState]=useState();
nazwa-to nazwa stanu (zmiennej)
nazwaState — to funkcja, ktéra zmienia stan
useState() — w nawiasie mozemy przypisa¢ warto$¢ poczatkowsg stanu

np. const [klasa, klasaState]=useState(,,3d”);

do stanu klasa na poczatku wpisze 3d

potem w kodzie mozemy np. napisaé
klasaState(,,4d”);

i wtedy do stanu klasa mamy zapisane 4d

uwaga, pamig¢tajmy , Ze na gorze musimy mie¢
import {useState} from ‘react’;

2. useEffect()

stuzy do uruchamiania kodu po wyrenderowaniu komponentu albo po zmianie
jakichs$ danych

useEffect(() => {

//dziata przy kazdej zmianie

IOk

useEffect(() => {
//dziata tylko raz, przy pierwszym uruchomieniu komponentu (strony)

3O

useEffect(() => {
/ldziatg tylko wtedy gdy zmieni si¢ warto$¢ tego co wpiszemy w nawiasy kwadratowe

}. [count]);

W useEffect mozemy uzy¢ funkcji setlnterval, czyli fukcj¢ wbudowang w JS, ktora
uruchamia si¢ co jakis$ (okreslony) czas, np.

useEffect(() => {
const timer = setInterval(() => {
console.log(,,wyswietle ten tekst co 2 sekundy™);

}, 2000);

return () => clearInterval(timer);

30

2000 oznacza dwie sekundy (ten czas podajemy w ms, przy czym 1000ms=1s)

Gdy uzywamy setlnterval, na koniec musimy usung¢ interwal, zeby nie tworzyty sie
jego kopie, robimy, to w taki sposob:

return () => clearInterval(timer);
timer to zmienna. Pod ktora przypisaliSmy setInterval

Oczywiscie pamigtajmy, ze na samym gorze musimy mie¢ import

import {useEffect} from ‘react’;
Jezeli uzywamy zaré6wno useState 1 useEffect, to mozemy zrobi¢ jeden import

import {useState,useEffect} from ‘react’;

3. useRef()

Uzywamy go, gdy

a. gdy chcemy przechowywac wartos¢, ktorej nie wyswietlamy na stronie

const licznik=useRef(0);

licznik to zmienna, ktora na poczatku otrzyma wartos$¢ zero

tej zmiennej nie wyswietlisz na stronie, ale mozesz w konsoli w taki
Sposob:

console.log(licznik.current);

b. gdy chcemy uzyska¢ dostep do elementow DOM

const pole = useRef();

const focusinput = () => {

pole.current.focus();

1

return (

<>
<input ref={pole} />
<button onClick={focuslInput}>Ustaw fokus</button>

<[>

);

Pamigtaj, ze jak odwotujesz si¢ do jakiegokolwiek elementu HTML to musisz w
nim napisa¢ ref={nazwa}, gdzie nazwa to nazwa hooka Ref

Pamigtaj tez, o imporcie

import {useRef} from ‘react’;
Ponizej masz przyklady, co mozesz oprocz focus() pisac po current :

.0ffsetWidth szerokos¢ elementu (z paddingiem i borderem)

.offsetHeight wysokos¢ elementu

.clientWidth szeroko$¢ bez borderéow, ale z paddingiem

.clientHeight wysokos¢ bez borderéw

scrollWidth cata szeroko$¢ przewijalnej zawartosci

.scrollHeight cata wysokos$¢ przewijalnej zawarto$ci
.getBoundingClientRect() doktadne potozenie i rozmiar (x, y, width, height)

zmiana tekstu divRef.current.textContent = "Nowy tekst"
zmiana HTML divRef.current.innerHTML = "tekst"
zmiana styl divRef.current.style.backgroundColor = "red"
dodanie klasy CSS divRef.current.classList.add (" aktywny")
usunigcie klasy CSS divRef.current.classList.remove("aktywny")

pobranie wartosci inputRef.current.value

usunigcie wartosci inputRef.current.value = "tekst"
ustawienie focus (kursor) inputRef.current.focus()
usunigcie focus inputRef.current.blur()

sprawdzenie zaznaczenia checkboxRef.current.checked

odtwarzanie audioRef.current.play()

pauzowanie audioRef.current.pause()

sprawdzanie czasu audioRef.current.currentTime
ustawienie gtosnosci audioRef.current.volume = 0.5
sprawdzenie, czy gra audioRef.current.paused (true/false)

