
HOOKIE

Hookie są dodatkiem, które pozwalają używanie i funkcjonalności bez użycia klas.

Uproszczają kod, zwiększają jego czytelność, pozwalają na pobieranie danych w prosty i

intuicyjny sposób

Przykładowe hookie

1. useState

używamy go, jeżeli będziemy chcieli wartość stanu wyświetlić na stronie

deklarujemy go w funkcji App, przed return

const [nazwa,nazwaState]=useState();

nazwa-to nazwa stanu (zmiennej)

nazwaState – to funkcja, która zmienia stan

useState() – w nawiasie możemy przypisać wartość początkową stanu

np. const [klasa,klasaState]=useState(„3d”);

do stanu klasa na początku wpisze 3d

potem w kodzie możemy np. napisać

klasaState(„4d”);

i wtedy do stanu klasa mamy zapisane 4d

uwaga, pamiętajmy , że na górze musimy mieć

import {useState} from ‘react’;

2. useEffect()

służy do uruchamiania kodu po wyrenderowaniu komponentu albo po zmianie

jakichś danych

useEffect(() => {

 //działa przy każdej zmianie

});

useEffect(() => {

//działa tylko raz, przy pierwszym uruchomieniu komponentu (strony)

}, []);

useEffect(() => {

//działą tylko wtedy gdy zmieni się wartość tego co wpiszemy w nawiasy kwadratowe

}, [count]);

W useEffect możemy użyć funkcji setInterval, czyli fukcję wbudowaną w JS, która

uruchamia się co jakiś (określony) czas, np.

useEffect(() => {

 const timer = setInterval(() => {

 console.log(„wyświetlę ten tekst co 2 sekundy”);

 }, 2000);

 return () => clearInterval(timer);

}, []);

2000 oznacza dwie sekundy (ten czas podajemy w ms, przy czym 1000ms=1s)

Gdy używamy setInterval, na koniec musimy usunąć interwał, żeby nie tworzyły się

jego kopie, robimy, to w taki sposób:

return () => clearInterval(timer);

timer to zmienna. Pod którą przypisaliśmy setInterval

Oczywiście pamiętajmy, że na samym górze musimy mieć import

import {useEffect} from ‘react’;

Jeżeli używamy zarówno useState i useEffect, to możemy zrobić jeden import

import {useState,useEffect} from ‘react’;

3. useRef()

Używamy go, gdy

a. gdy chcemy przechowywać wartość, której nie wyświetlamy na stronie

const licznik=useRef(0);

licznik to zmienna, która na początku otrzyma wartość zero

tej zmiennej nie wyświetlisz na stronie, ale możesz w konsoli w taki

sposób:

console.log(licznik.current);

b. gdy chcemy uzyskać dostęp do elementów DOM

const pole = useRef();

const focusInput = () => {

 pole.current.focus();

};

return (

 <>

 <input ref={pole} />

 <button onClick={focusInput}>Ustaw fokus</button>

 </>

);

Pamiętaj, że jak odwołujesz się do jakiegokolwiek elementu HTML to musisz w

nim napisać ref={nazwa}, gdzie nazwa to nazwa hooka Ref

Pamiętaj też, o imporcie

import {useRef} from ‘react’;

Poniżej masz przykłady, co możesz oprócz focus() pisać po current :

.offsetWidth szerokość elementu (z paddingiem i borderem)

.offsetHeight wysokość elementu

.clientWidth szerokość bez borderów, ale z paddingiem

.clientHeight wysokość bez borderów

.scrollWidth cała szerokość przewijalnej zawartości

.scrollHeight cała wysokość przewijalnej zawartości

.getBoundingClientRect() dokładne położenie i rozmiar (x, y, width, height)

zmiana tekstu divRef.current.textContent = "Nowy tekst"

zmiana HTML divRef.current.innerHTML = "tekst"

zmiana styl divRef.current.style.backgroundColor = "red"

dodanie klasy CSS divRef.current.classList.add("aktywny")

usunięcie klasy CSS divRef.current.classList.remove("aktywny")

pobranie wartości inputRef.current.value

usunięcie wartości inputRef.current.value = "tekst"

ustawienie focus (kursor) inputRef.current.focus()

usunięcie focus inputRef.current.blur()

sprawdzenie zaznaczenia checkboxRef.current.checked

odtwarzanie audioRef.current.play()

pauzowanie audioRef.current.pause()

sprawdzanie czasu audioRef.current.currentTime

ustawienie głośności audioRef.current.volume = 0.5

sprawdzenie, czy gra audioRef.current.paused (true/false)

