
KALENDARZ

Stwórz komponent Calendar, który pozwala użytkownikowi wybrać dowolną datę i
sprawdzić:

 ile dni pozostało do tej daty,

 jaki jest dzień tygodnia wybranej daty,

 czy wybrana data to dzień ustawowo wolny od pracy w Polsce.

Wymagania:

1. Użytkownik może wpisać lub wybrać datę z kalendarza.

2. Po kliknięciu przycisku Oblicz:

o wyświetlana jest wybrana data wraz z dniem tygodnia,

o wyświetlana jest liczba dni pozostałych do tej daty (lub ile dni minęło, jeśli data
jest w przeszłości),

o wyświetlana jest informacja, czy wybrana data jest dniem wolnym od pracy.

3. Jeśli wybrana data to święto:

o tekst z informacją o dniu wolnym powinien być czerwony,

o w przeciwnym wypadku czarny.

4. Dni ustawowo wolne należy uwzględnić w dwóch grupach:

o stałe daty (Nowy Rok, Święto Trzech Króli, Święto Konstytucji 3 Maja itp.),

o święta ruchome (Wielkanoc, Poniedziałek Wielkanocny, Zielone Świątki,
Boże Ciało).

5. Wyświetl również dzisiejszą datę wraz z dniem tygodnia.

Podpowiedzi:

Do przechowywania wybranej daty i liczby dni użyj hooków useState.

Do obliczenia różnicy dni użyj:

 const dni = Math.ceil (wybranaData.getTime() - today.getTime())/ (1000 * 60 * 60 * 24));

Do aktualnej daty użyj obiektu Date

const now = new Date();

console.dir(now);

getDate() - zwraca dzień miesiąca (wartość z przedziału 1 - 31)

getDay()
- zwraca dzień tygodnia (0 dla niedzieli, 1 dla poniedziałku, 2 dla wtorku

itd)

getYear()
- zwraca liczbę reprezentującą rok (dla lat 1900 - 1999 jest to 2-cyfrowa

liczba np. 99, a dla późniejszych jest to liczba 4-cyfrowa np. 2002)

getFullYear() - zwraca pełną liczbę reprezentującą rok (np. 1999 lub 2000)

getHours() - zwraca aktualną godzinę (wartość z przedziału 0 - 23)

getMilliseconds() - zwraca milisekundy (wartość z przedziału 0 - 999)

getMinutes() - zwraca minuty (wartość z przedziału 0 - 59)

getMonth() - zwraca aktualny miesiąc (0 - styczeń, 1 - luty itp.)

getSeconds() - zwraca aktualną liczbę sekund (wartość z przedziału 0 - 59)

getTime()
- zwraca aktualny czas jako liczbę reprezentującą liczbę milisekund która

upłynęła od godziny 00:00 1 stycznia 1970 roku

Stałe dni wolne możesz zdefiniować jako tablicę, np.

["01-01", "01-06", "05-01", "05-03", "08-15", "11-01", "11-11", "12-25", "12-26"];

Za pomocą metody includes() możesz sprawdzić, czy tablica zawiera wskazaną jako

parametr wartość.

Święta ruchome możesz obliczyć wykorzystując poniższy listing

const year = wybranaData.getFullYear();

 // Funkcja obliczająca datę Wielkanocy

 function easterDate(y) {

 const f = Math.floor;

 const G = y % 19;

 const C = f(y / 100);

 const H = (C - f(C / 4) - f((8 * C + 13) / 25) + 19 * G + 15) % 30;

 const I = H - f(H / 28) * (1 - f(H / 28) * f(29 / (H + 1)) * f((21 - G) / 11));

 const J = (y + f(y / 4) + I + 2 - C + f(C / 4)) % 7;

 const L = I - J;

 const month = 3 + f((L + 40) / 44);

 const day = L + 28 - 31 * f(month / 4);

 return new Date(y, month - 1, day);

 }

 const wielkanoc = easterDate(year); // Wielkanoc

 const oneDay = 1000 * 60 * 60 * 24;

 // Święta ruchome

 function formatMMDD(date) {

 const m = String(date.getMonth() + 1).padStart(2, "0");

 const d = String(date.getDate()).padStart(2, "0");

 return `${m}-${d}`;

}

 const movableHolidays = [

 formatMMDD(wielkanoc), // Wielkanoc

 formatMMDD(new Date(wielkanoc.getTime() + oneDay)), // Poniedziałek Wielkanocny

 formatMMDD(new Date(wielkanoc.getTime() + 49 * oneDay)), // Zielone Świątki

 formatMMDD(new Date(wielkanoc.getTime() + 60 * oneDay)) // Boże Ciało

];

